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ABSTRACT 

Let A be a Hopf algebra with bijective antipode and B C A a right coideal 

subalgebra of A. Formally, the inclusion B C A defines a quotient map 

G -~ X where G is a quantum group and X a right homogeneous G-space. 

From an algebraic point of view the G-space X only has good properties 

if A is left (or right) faithfully flat as a module over B. 

In the last few years many interesting examples of quantum G-spaces 
for concrete quantum groups G have been constructed by Podle~, Noumi, 
Dijkhuizen and others (as analogs of classical compact symmetric spaces). 
In these examples B consists of infinitesimal invariants of the function 
algebra A of the quantum group. As a consequence of a general theorem 
we show that in all these cases A as a left or right B-module is faithfully 
flat. Moreover, the coalgebra A/AB + is cosemisimple. 

0. Introduct ion  

Let  A be  a Hopf  a lgebra  wi th  bi ject ive an t ipode  over the  ground  field k, and  

B C A a r ight  coideal  subalgebra ,  t ha t  is a suba lgebra  wi th  A ( B )  C B | A. We 

can th ink  of t he  inclusion B C A as defining a quot ient  m a p  G --+ X where  G 

is a q u a n t u m  group and X is a quan tum space wi th  r ight  G-ac t ion  or  a r ight  

G-space .  

Since A is not  commuta t i ve  in general ,  A / A B  + (recall  t ha t  B + = K e r ( e l s  ) 

is the  a u g m e n t a t i o n  ideal  of B)  is jus t  a coa lgebra  and a left A-modu le  bu t  not  
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a Hopf algebra. Thus X usually is not the quotient of G by some quantum 

subgroup. But if A is B-faithfully flat one still gets B back from the quotient 

map A --+ A/AB + as the A/AB+-coinvariant elements of A. 

From an algebraic point of view IT1, Sch, M1] the inclusion B C A only has 

good properties if A is faithfully flat as a left (or right) module over B. 

In the last few years many interesting examples of quantum G-spaces for con- 

crete quantum groups G have been constructed. Podle~ [P] found a continuously 

parametrized family of SUq(2)-spaces which are analogs of the classical 2-sphere 

SU(2)/SO(2).  Dijkhuizen and Noumi [DN] defined more generally a family of 

Uq (n)-spaces called quantum projective spaces. [D] gives a survey on other quan- 

tum G-spaces which are analogs of classical compact symmetric spaces such as 

SU(n) /SO(n)  or SU(2n)/Sp(n) .  In all these cases, the right coideal subalgebra 

B is defined by infinitesimal invariants with respect to a coideal I in U, the 

U-part of the quantum group G (the classical counterpart of U is the universal 

enveloping algebra of the Lie algebra of the algebraic group). Moreover, B is a *- 

subalgebra of the Hopf *-algebra A which is guaranteed by the natural condition 

S(I)* C I. 

In this paper we show as a consequence of the general theorem 2.2 that in the 

above examples, the extension B C A has the crucial property of faithful flatness. 

Note that  the module structure of the quantized universal enveloping algebra U 

over its right coideal subalgebras is much easier to investigate, because U is 

pointed (that is all its simple subcoalgebras are one-dimensional) whence the 

module structure is faithfully flat whenever the set of group-likes in the right 

coideal subalgebra is a group [M2]. In particular this condition holds for the new 

examples in ILl. 

Let U be a Hopf algebra with bijective antipode, K C U a left coideal sub- 

algebra and C a tensor category of finite dimensional left U-modules (for example 

modules of type 1 for Uq(g), where g is a semisimple complex Lie algebra and 

q E k not a root of 1). Let A = U ~ be the Hopf dual of U with respect to C and 

B := {a C A I a - K  + = 0}, 

the algebra of infinitesimal invariants (here "." denotes the natural (U, U)- 

bimodule structure on A C U*, as recalled in the beginning of section 2). Note 

that  B is a subalgebra since K + is a coideal of U and A is a right (and left) K- 

module algebra via ".". It is easy to see that B C A is a right coideal subalgebra. 

But in general B is not a Hopf subalgebra. In this set-up we now assume that 

all modules in C are semisimple over K. Then we call K C-semisimple. We show 

in Theorem 2.2 that 
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�9 A is faithfully flat as a left and right B-module, more precisely A as a left 

and right B-module is a direct sum of finitely generated and projective 

B-modules with one direct summand being B. 

�9 The quotient coalgebra A/AB + is cosemisimple, and if K is commuta- 

tive and k is algebraically closed, then A / A B  + is spanned by group-like 

elements. 

In particular, in the case of Podleg' quantum spheres, A / A B  + is spanned by 

group-like elements. This answers a question of Brzezifiski [B]. Recall that a 

coalgebra C is co semi s imp le  [Sw] if C is the direct sum of its simple sub- 

coalgebras. C is spanned by group-like elements if and only if C is cosemisimple 

and pointed. 

In section 3 we show that K in fact is C-semisimple in many important cases. 

Let U be a Hopf *-algebra, and assume that U is pointed (this holds for all 

the quantized universal enveloping algebras Uq(g)). If I C U is a coideal with 

S(I)* C I and B := {a E A I a - I  = 0} as in the examples described above, then 

IU = K+U where K is the left coideal subalgebra of the right U/IU-coinvariant 

elements in U. Hence we may also write B = {a E A] a.  K + = 0} as in Theorem 

2.2. If we assume that all modules V E C have a hermitian inner product (,) 

such that (xv, w) = (v, x'w) for all v, w E V and x E U, then by Corollary 3.3, 

K = K* is C-semisimple, and our abstract Theorem 2.2 applies. 

In sections 4 and 5 we consider in U :-- Uq(sl(2)) and Uq(g), for g a semisimple 

complex Lie algebra and q E k not a root of unity, an arbitrary skew-primitive 

element x with A(x) = g | x + x | 1, where g is a group-like element in U. Then 

the subalgebra k[x] generated by x is a left coideal subalgebra in U. We take for 

C the class of finite dimensional representations of type 1 and define 

B := {a E A I a .  x = 0} 

in A := Uc ~ the q-deformed function algebra of the connected, simply connected 

algebraic group with Lie algebra g. Somewhat surprisingly we show in Theorem 

5.2 that  for all x (up to one case) the following conditions are equivalent: 

(a) k[x] is C-semisimple, that is x acts on all finite dimensional U-modules as 

a diagonalizable operator. 

(b) A is left or right faithfully flat over B. 

(c) A / A B  + is spanned by group-like elements. 

Moreover, condition (a) is equivalent to an explicit numerical condition on the 

coefficients of x. 

Thus we see that  condition (a) which was studied by Noumi and Mimachi 
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[NM] in connection with Podlefi' quantum spheres is equivalent to the abstract 

algebraic condition of faithful flatness in (b). 

Most calculations in section 4 and special versions of some arguments in the 

proof of 2.4(1) are already contained in the first author's diploma thesis [Mii]. 

ACKNOWLEDGEMENT: We would like to thank P. Hajac, M. Takeuchi, and the 

referee for useful remarks. 

1. P r e l i m i n a r i e s  a n d  s o m e  g e n e r a l  r e su l t s  

In the following we fix a field k which is the ground field for all algebras and 

vector spaces. For definitions and basic results on Hopf algebras see [Sw, M]. We 

use the simplified notation A(x) = y]~ xl | x2 for the coproduct in a coalgebra. 

Let V be a vector space. In the following (except for section 3), we write V* for 

the dual space Horn(V, k) of V. 

To study sub- and quotient objects of Hopf algebras it is crucial to consider 

faithfully flat modules and faithfully coflat comodules. Recall that a right mod- 

ule M over an algebra B is called flat  respectively fa i th fu l ly  f lat  if and only if 

the functor M |  BAd -+ kAd from the category BJM of left B-modules to the 

category kAd of k-vector spaces preserves respectively preserves and reflects exact 

sequences. Dually, a right comodule V over a coalgebra C is called coflat  respech 

tively fa i th fu l ly  coflat  if and only if the cotensor product V[:]c - : cAd __4 k.M 

preserves respectively preserves and reflects exact sequences. Here, c a d  is the 

category of left C-comoduless, and if W is a left C-comodule, then the c o t e n s o r  

p r o d u c t  is defined as the kernel of 

Av @ i d -  i d |  V |  V | 1 7 4  

where Av and Aw are the comodule structure maps of V and W. Of course, 

these notions are defined in the same way for modules or comodules on the other 

side. 

Let A be a Hopf algebra. If I C A is a vector subspace with quotient map 

~r: A --4 A / I  (usually I will be a coideal and a left or right ideal), we let 

c~ := {a �9 A] E ~ ( a l )  | = r(1) |  

be the set of left A/I-coinvariant e l e m e n t s .  If I C A is a coideal, then 

the quotient map ~: A -+ A / I  is a coalgebra map, and A is a right (respec- 

tively left) A/I -comodule  via ~r with comodule structure (v | id)A (respectively 
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(id| Dually for a subalgebra B of A we consider A as a left and a right B- 

module by restricting the multiplication in A. A r ight  (respectively left) coideal  

suba lgeb ra  B of A is a subalgebra B C A with A(B) C B @ A (respectively 

A Q B ) .  

THEOREM 1.1 (IT1, Theorem 2]): Let A be a Hopfalgebra and I C A a coideal 

and a left ideal with quotient map 7r: A --+ A / I .  Define B := c~ A. Assume A 

is faithfully coflat as a right A/I-comodule via r. Then B C A is a right coideal 

subalgebra, I = A B  +, where B + -- Ker(c[s) is the augmentation ideal of B,  

and A is faithfully flat as a right B-module. 

Moreover, it is shown in IT1] that M ~ A @B M is an equivalence between 

BAd and the category of left (A / I ,  A)-Hopf modules. 

Later on we will need the categories A4 A and BJ~ A of (A ,B) -Hopf  

m o d u l e s  for a right coideat subalgebra B of a Hopf algebra A. Objects in .MAB 

(respectively .B.M A) are right (respectively left) B-moduLes V which are right 

A-comodules such that the comodule structure map Av: V --4 V | A is right 

(respectively left) B-linear, where V | A is a right (respectively left) B-module 

via (v | a)b := ~ vbl | ab2 (respectively b(v | a) = ~ blv | b2a) for all v E V, 

a E A, and b E B. Morphisms are right A-colinear and right (respectively left) 

B-linear maps. Note that B E A4 A and B E BJ~  A where the restriction of 

A: A --4 A | A is the comodule structure. 

THEOREM 1.2 "[MW, 2.1]: Let A be a Hopf algebra with bijective antipode 

and B C A a right coideal subalgebra. Let ft :--- A / A B  + with quotient map 

lr: A --+ A. Then ft is a quotient coalgebra and a quotient left A-module of A, 

and the following are equivalent: 

(1) A is faithfully cottat as a left A-comodule via 7r, and B = c~ 

(2) A is faithfully fiat as a B-module. 

(3) A is projective as a left B-module, and B is a left B-direct summand in A. 

(4) A is fiat as a left B-module, and B is a simple object in A4 A. 

(5) The functor M A --+ All A, M ~-~ M / M B  + is an equivalence. 

Proof: This is [MW, 2.1] when (3) is replaced by 

(3') A is a projective generator as a left B-module. 

We have to show the equivalence of (3) and (3'). Assume (3'). Then A is 

projective and faithfully flat as a left B-module by [MW]. Hence B is a left 

B-direct summand in A by [R, 2.11.29]. | 

The simplicity condition in (4) means that any non-zero right B-submodule 

and right A-subcomodule of B is equal to B. 
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The categorical characterization (5) shows the significance of the equivalent 

conditions in 1.2. Moreover, by [M1, 1.11] the mapping 

I B C A is a right coideal~ f I C A is a coideal and l e f t ]  

B subalgebra, A is left faith-~ --~ / I t  ideal and A is left faithfully 

fully fiat over B ) l, coflat over A / I  ) 

is a bijection between sub- and quotient objects of A satisfying the corresponding 

conditions in 1.2. 

Remark 1.3: 

(1) If we apply 1.2 to the dual algebras B ~ C A ~ (A ~ is a Hopf algebra 

since the antipode of A is bijective), we get the dual theorem where fi~ is 

now A/B+A, 3d A is replaced by BA4 A, and A is considered as a right 

B-module. 

(2) Let A be a Hopf algebra and B C A a right coideal subalgebra. We note 

the following simplicity criterion: If B is a left B-direct summand in A 

then B is simple in Ad A. 

Proof." Let f :  A --+ B be a left B-linear map such that f ib  = id. Let X C B 

be a non-zero subobject in Ad A. Then X A  is a non-zero Hopf module in Ad A. 

Since Ad A -~ kJt4 by the fundamental theorem of Hopf modules [Sw, 4.1.1], A is 

simple in 3,t A and X A  -- A. Hence there exist finitely many elements x~ E X, 

a/ E A such that  ~ i x i a i  = 1. Then 1 = f(1) = }-~/xif(ai) E X, and X -- B. 
| 

For completeness we give the short proof of the following important observation 

of Koppinen. 

LEMMA 1.4: [Ko] Let A be a Hopf algebra with bijective antipode S and B C A 
a right (resp. left) coideal with 1 E B. Then S(AB +) = B+A (resp. S(B+A) = 
AB+). 

Proof: We assume that B is a right coideal (and then apply the result to the 

dual coalgebra of A to get the lemma for left coideals). Let {xj[ j E J} be a 

basis of B +. Then for all x C B, A(x) = 1 | x + ~ j  xj | yj for some yj C A. 

Now assume x C B + and apply # o (S | id) and # o (id | S), where # denotes 

multiplication in A: 

0---- l~(x) = x+~-~S(x j )y j ,  and 0 = S(x) + Z x j S ( y j ) .  
J J 
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Therefore, B + C S(B+)A and S(B +) C B+A. Hence B+A = S(B+)A and 

S(AB +) = S(B+)A = B+A. I 

COROLLARY 1.5: Let A be a Hopf algebra with bijective antipode and I C 
A a coideal and left ideal with quotient map 7r: A --+ A/I .  Assume A / I  is 

cosemisimple, and let 
A/I=Gcj 

jEJ 

be the direct sum of the simple subcoalgebras Cj for j E J ,  of A/I .  Then: 
(1) I = AB +, and A is/eft  and right faithfully fiat over B and left and right 

faithfully coflat over A / I  via re. 

(2) For all j E J, let 

jA  := {a �9 A I E ~ r ( a l )  | a2 �9 Cj |  

Aj := { a � 9 1 7 4  � 9 1 7 4  

Then A = ~ y ~ j  jA = ~ j e J  S(Aj), and for all j,  jA respectively S(Aj) is a 
right coideal in A and a finitely generated and projective right respectively 

left module over B. If 1 �9 J is the distinguished index with C1 = kit(l), 

then B = 1A = S(A1). 

Proof'. (1) By [Sch, 1.3], A is right faithfully coflat over A / I  if and only if 

(a) A is right coflat over A / I  and 

(b) 7r splits as a map of right A/I-comodules. 
Since A / I  is cosemisimple, any exact sequence of right A/I-comodules splits. 

In particular, (a) and (b) hold. Thus we see that  A is right and by the same 

argument left faithfully coflat over A/I.  Since A is right faithfully cofiat over A/I ,  
we get from 1.1 that AB + = I and A is right faithfully flat over B. Then 
B C A is a right coideal subalgebra, B = c~ and A is left faithfully coflat 

over A / A B  +. Hence the equivalent conditions in 1.2 hold, and A is left faithfully 

flat over B, too. 

(2) By (1), B is a right coideal subalgebra of A, A is left and right faithfully 

flat over B and ft. = A / A B  + is cosemisimple. Hence by 1.2, 

AJ A--+ M ~, M ~ M / M B  +, and M ~--+ M A, V ~ VDAA, 

are quasi-inverse category equivalences. For any right ,4-comodule V, the Hopf 

module structure on V[:]AA is given by multiplication and comultiplication on A. 

Since A = ~ j  Cj is a decomposition of right A-comodules, ADAA ~- ~ j  Cjn ~A 
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as right A-comodules and right B-modules. Moreover, for all j the natural iso- 

morphism 

A ~ ADAA, A ~  Z r ( a l ) |  

maps jA  onto CjF]AA, Hence A = ~ i j A  is a decomposition in M A. By 

construction, ~A = (~ = B. AII the jA are projective right B-modules since A 

is projective as a right B-module by 1.3(1). They arc finitely g[~nerated over B 

since ~A "~ CjDAA and C 3 is finite dimensional. More generally, let V be any 

finite dimensional right }i,-comodule. Then M = V[3AA is finitely generated 

as a right B-module. To see this write M as the ascending union of all Hopf 

submodules X B  where X is a finite dimensional right A-subcomodule of M. Let 

F: M A -)  .M A be the category equivalence of 1.2. Then F(M) ~- V is the 

ascending union of all F(XB) .  Since V is finite dimensional, F(M) = F(XB)  

for some X, hence M = X B  is B-finitely generated. 

To get the decomposition of left B-modules wc apply the previous result to 

A ~ Then B ~ C A ~ is a right coideal subalgebra and A ~ is left and right 

faithfifily fiat over B ~ By Koppincn's lemma 1.4, S(AB +) = B+A and 

a: A /AB + ~-) A/B+A, a ~ S(a), 

is a coalgebra antiisomorphism. Therefore A/B+A = (~j a(Cj) is a direct sum 

of simple subcoalgebras and A~176176 + = A/B+A is cosemisimple. Thus 

we know from the previous proof that A = (~)j : / i  where for all j ,  

j}, := {a �9 A I ~ ( a l ) |  e a(Cj)  | A} 

is a finitely generated projective left B-module and a right coideal, and lti, -- B. 

Here F: A --+ A/B+A is the canonical map. Finally, for all j, jA = S(Ai ) since 

for a l l a E  A, 

acjti 
r ~ T r ( S - I ( a l ) ) | 1 7 4  

r S-1 (a) e Aj. | 

2. A class of  homogeneous spaces defined by infinitesimal invariants 

We first collect some well-known results and notations on duality (of. [M, Chapter 

9], [J, 1.1.4], IT2, section 1]). Let U be an algebra. The dua l  co a lg eb ra  U ~ C U* 

is spanned by the matrix coefficients of all finite dimensional left U-modules V. 
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If p: U -4 End(V) is the representation of U, C V denotes the image of the 

dual coalgebra (End(V))* under p*. Thus C y is the k-linear span of all m a t r i x  

coeff ic ients  ef,~ E U*, f E V*, v E V, where cf,~(u) := f(uv) for all u E U. 

If (vi), (fi) are dual bases of V, V*, the coalgebra structure of C y is explicitly 

given by A(cf,~) = ~ i  cf,~ | cf~,~ for all f E V*, v E V. Then U ~ is the sum 

of all the subcoalgebras C V, and C yley2 = C yl + C V2 for finite dimensional left 

U-modules V1, V2. The natural (U, U)-bimodule structure on U* and on all CY's 

is denoted by x .  a and a - x ,  for all x E U, a E U*, where (x- a)(u) := a(ux) 
and (a. x)(u) := a(xu) for all u E U. Note that the dual algebra U* is a left and 

right U-module algebra with respect to these actions, since for all a, b E U* and 

x E U ,  

x . ( a b ) =  E ( x l . a ) ( x 2 . b ) ,  (ab) . x= E ( a . x l ) ( b . x 2 ) .  

In the following we assume that U is a Hopf algebra. A t e n s o r  c a t e g o r y  C of 

finite dimensional left U-modules is a class C of finite dimensional left U-modules 

such that 

k E C (k as the trivial U-module via e), 

if X, Y E C, then X | Y E C and X | Y E C (with diagonal U-action on 

X |  u ( x Q y )  := ~ U l X |  for a l l u  E U , x  E X a n d y E  Y ) , a n d  

X* E C (where (uf)(v) := f(S(u)v) for all u E U, f E X*, and v E X, 

where S denotes the antipode of U). 

By definition, the dual Hopf algebra with respect to C, Uc ~ C U ~ c U*, is 

spanned by all matrix coefficients of all V E C. Thus 

U ~  
VEC 

A tensor category C is called semis imple  if all V E C are isomorphic to direct 

sums of simple modules in C. If C is semisimple, then U~ is cosemisimple, hence 

the antipode of U ~ is bijective. In general, if the antipode of U is bijective and for 

all X E C also X* with U-action given by S -1 (that is (u. f)(v) := f (S- l (u)v))  
is in C, then the antipode of U ~ is bijective. 

Remark 2.1: Let V be a finite dimensional left U-module with representation 

p: U -4 End(V). 

1. V is semisimple as a U-module if and only if C y is a cosemisimple 

coalgebra. If V is simple, then C y is a simple coalgebra. 

2. V | V* -4 C V, v | f ~4 cs,, is a map of (U, U)-bimodules. Here, V | V* 

is a (U, U)-bimodute via u(v | f )  = uv | f and (v | f )u  := v | fu ,  where 

(fu)(u') := f(uu') for all u,u' E U, v E V, and f E Y*. 
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3. If V is simple and k is algebraically closed, then V|  --+ C v, v N f  ~-+ cy,v 

is bijective. 

4. Assume C is semisimple. Let s be a complete set of representatives of the 

simple modules in C. Then (Peter-Weyl decomposition) 

u =@c V 
VEs 

Proof: 1. If V is a semisimple U-module, then V is a faithful and semisimple 

p(U)-module, hence p(U) is semisimple (since the radical of p(U) annihilates V). 

If V is simple, the finite dimensional semisimple algebra p(U) is simple (this 

follows, for instance, from the theorem of Artin-Wedderburn). Conversely, if 

p(U) is semisimple, then V is semisimple over p(U) and U. This proves the claim 

by duality since C V ~ p(U)*. 

2. is clear. 

3. By the density theorem, p is onto. 

4. [T2, 1.4]. I 

Let C be a tensor category. A subalgebra K c U is called C-semis imple  if all 

V E C are semisimple as left K-modules (by restriction). 

THEOREM 2.2: Let U be a Hopf algebra, K C U a left coideal subalgebra and C 

a tensor category of finite dimensional left U-modules. Let A := U ~ be the dual 

Hopf algebra with respect to C, B := { a E A  [ a . K  + = 0 }  and fii := A / A B  +. 

Assume that the antipode of A is bijective. Then 

(1) B C A is a right coideal subalgebra with B = C~ 

(2) If K is C-semisimple, then A is cosemisimple and A is faithfully fiat as a 

left and right B-module. More precisely, according to 1.5, A = (~ jE J  j A  

respectively A = (~je3 S(Aj)  is a direct sum of finitely generated and 

projective right respectively left B-modules and of right coideals with B = 

1A = S(A1). 

(3) If K is a Hopf subalgebra of U, then in (2) for 411 j ,  j A  is also finitely 

generated and projective as a left B-module. 

(4) If K is commutative and k is algebraically closed, then A is spanned by 

group-like elements if and only if  K is C-semisimple. 

Proof: (1) Let .~ be the image of A under the restriction map U ~ -+ K ~ which 

is the coalgebra map dual to the inclusion of algebras K C U. Then 7r: A -+ A, 

Ir(a)(u) := a(u) for all a E A and u E U, is a surjective coalgebra map. Moreover, 

the kernel of 7r is a left ideal in A since for all a E Ker(Tr), c E A and u E K,  
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(ca)(u) = Y'~c(ul)a(u2) -- 0, Here, the last equality holds because K is a left 

coideal in U. Thus 7r: A --+ A is a surjective map of coalgebras and left A- 

modules. We first note that  B -- r176 For if a E A, then a is left A-coinvariant 

if and only if ~al(x)a2(y)  = e(x)a(y) for all x E K,  y E U. By definition of 

the right U-module structure on A (as a submodule of U*), the last equation 

is equivalent to a . K  + = 0 or a C B. Since 7r is a map of left A-modules, 

B = c~ is a right coideal subalgebra of A, and therefore B C r176 To see 

that  B = c~ note that  AB + C Ker(Tr) since 7r is left A-linear and for all 

b S + ,  = b, h e n c e  = : 0. Th s c a n  b e  

factorized as A -+ A / A B  + = JL ~ A, and c~ C c~ = B. 

(2) We now assume that  K is C-semisimple. Then A is cosemisimple. For 

by definition, A is the sum of all C v restricted to K,  for V E C. Since K is 

C semisimple, any V E C is K-isomorphic to some direct sum X1 (9 --- (9 X,~ of 

simple K-modules  X{. Hence 7r(C v) is cosemisimple as the sum of the simple 

subcoalgebras C x" of K ~ Thus A C K ~ is a eosemisimple subcoalgebra. Since 

is cosemisimple and 7c: A --+ A is a surjective map of coalgebras and left and right 

A-modules, we conclude from 1.5 that  A = A/AB + = A and A is left and right 

faithfully flat over B and we have the decompositions of 1.5. 

(3) Assume K is a Hopf subalgebra of U. Then U ~ --+ K ~ is a Hopf algebra 

map and .~ = A/AB + is a quotient Hopf algebra of A. The antipode defines a 

bijection in the set of all simple subeoalgebras C] of 13,. By (2) it suffices to show 

that  S(Ci) = C~ for j , l  E J, implies S(jA) = Al. Indeed, for any a E A, 

a E j A <  ;. ~-~.~I|174 
-,' ,~- E S ( a l ) |  c S (C j ) |  

~ S(a)l | S(a)2 E A | CI 
S(a) E Al. 

(4) Assume K is commutative.  Then K ~ and A are cocommutative. If K 

is C-semisimple, by (2), ft. = fi~ is cosemisimple hence spanned by group-like 

elements because k is algebraically closed. Conversely, assume that  A / A B  + is 

spanned by groupdike elements. Since fi, is a coalgebra quotient of A / A B  +, 

also .~ is spanned by group-like elements and hence cosemisimple. By definition, 

is the sum of all the dual coalgebras pv(K), where Pv: U --+ End(V) is 

the representation corresponding to V E C. Hence for all V E C, pv(K)* is 

cosemisimple or equivalently pv(K) is a semisimple algebra or V is a semisimple 

module over K.  Thus K is C-semisimple. 1 
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Remark 2.3: In the proof of 2.2 we showed that A is left and right faithfully fiat 

over B if A is left faithfully coflat over A and that this last condition is satisfied 

in case K is C-semisimple. More generally let r be the set of all U-annihilators 

of all V C C and assume that for all I �9 5 c there is J �9 5 r with J C I such that  

U / J  is left faithfully flat over K / K  C~ J. Then A is left faithfully coflat over A. 

In the situation of 2.2(4) we now assume that also C is semisimple. Then the 

decompositions in 2.2 can be described more concretely. In this case we will give 

an alternative proof not using 2.2. We will explicitly determine dual bases of the 

finitely generated and projective B-module summands of A and the set G(.~) of 

group-like elements of the quotient coalgebra A. 

For any character X �9 Alg(K, k) of K,  a left K-module M, and a right K- 

module N we will denote the eigenspaces of ) /by  

xM := {m E M lVx c K: x m  = X(x)m} 

and 

g x := {n e N I Vx �9 K: nx = nx(x)} .  

COROLLARY 2.4: Let U be a Hopf algebra with bijective antipode over an alge- 

braically dosed field k, K C U a left coideal subalgebra and C a tensor category 

of finite dimensional left U-modules. Define A, B and fI as in 2.2. Assume that 

K is commutative and C-semisimple and C is semisimple. Let X ( K ,  C) be the set 

of all X �9 Alg(K, k) with xV  7 ~ {0} for some simple U-module V C C. Then 

(1) A = (~xeX(K,C) Ax and A = (~xeZ(K,C) S(xA) are direct sums of right 
coideals and finitely generated and projective right (left, respectively) B- 

modules with B = Ar = S(~A). 

(2) The natural coalgebra map ,2t ~ K ~ given by restriction defines a bijection 

a(~) ~-~ X(K,C), g ~  xg, 

and for any group-like element g �9 f~, the right eigenspace Ax.  of xg is the 

space of left g-invariant elements 9A := {a C A I ~ gl | a2 = 9 | a}, and 

x A = Ag := {a �9 AI E a l  | -- a |  

Proof: (1) We first consider the decomposition A = (~x Ax" Let g be a set 

of representatives of the isomorphism classes of the simple modules in C. By 

2.1, A -- ( ~ y e c  CV is a decomposition into finite dimensional right (and left) 

U-modules. Since K is commutative and k is algebraically closed, all finite di- 

mensional simple K-modules are 1-dimensional and given by characters of K.  
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By assumpt ion  ally V E E is K-semis imple  and has a basis (v,) of eigenvectors 

v, E V,, for some characters  X~ of K. Hence xvi = X,(x)v,  for all i and all x E K.  

Let (f~) be the dual basis of (v~) in V*. Then  fi �9 x = Xi(x) f i  for all i and all 

x E K.  Thus  it follows from 2.1, (2) and (3) tha t  for all V E 8, C y ~ V | V* is 

a semisimple right K-module ,  and we can write 

x VEs x 

By definition, A~ -- B. For any X, Ax is a right B-submodule of A since for all 

aEA~ ,bEBandxE  K, 

( a b ) . x  = Z ( a .  x l ) ( b ' x 2 )  

= Z ( a "  xl)br since x2 E K 

= ( a .  x)b 

=ab)i(x). 

It is easy to check tha t  all eigenspaces A X arc right coideals in A. 

Let X be a character  of K.  It  remains to show tha t  A x is finitely generated and 

project ive as a right B-module.  We (:an assume tha t  A~ r {0} or equivalently 

)( E X ( K , C ) .  Hence there exists a simple module V E s with (CV)x  # {0}. Let 

(v,), ( f i )  be dual bases of eigenvectors of V and V* as before. Thus  f3 .x = X(x ) f j  

and xvl  = X(x)v  i for some j and all x E K.  Define v := v i ,  f := f j  and consider 

the mat r ix  coefficient cI,,,. Since (v~), ( f ,)  are dual bases and 

A(cs , , )  = ~ es,,. | ci,,~, 
i 

we get 1 = f ( v )  = e(ci , ,  ) = ~ , c i , , S ( c L . , , ) ,  where S is the an t ipode  of A. 

De f inea i  := c i , ,  ,, b, := S(cL,,, ) and r  := b,a for a l i a  E A x. By the dual 

basis l e m m a  it suffices to prove tha t  ai E A x and r  = b,a E B for all i and 

a E A  x. F o r a l l u E U a n d x E K ,  

( a ,  . = f ( x u v , )  = ( S "  = ) d x ) S ( u v , )  = 

hence a, E A~. 

Finally, for all a E A x and x E K ,  

(b,a) . x = E ( b ,  . x , ) (a  . x2) 

= E ( b i "  x l )aX(x2)  since x2 E K 

=(b,. 

=(b~a)e(x), 
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since (bi" ~ XlX(X2)) = bie(x). Thus h i -a  C B. The last equality holds since for 

all u E U, 

(bi " E XlX(X2))(u) =S(cf i 'v ) (E XlX(X2)U) 

=cs.v(s(~) ~ s(xl)~(x2)) 

=fi(S(u) E S(xJx(x2)v) 

=fi(S(u) E S(Xl)X2V) since X2 E K 

=fi(S(u)v)r = b~(u)r 

In the same way we have a decomposition into left eigenspaces A = (~x x A" 
Hence A = (~x S(xA) since S is bijective. One easily sees that  all the S(xA ) are 

right coideals. From Koppinen's lemma for left coideals (apply 1.4 to the dual 

coalgebra) we get 

K+U = S- I (UK +) = S-I(K+)U and 

B ----  {a E A l a - S - I ( K  +) = {0}}. 

Hence S(eA) = B since for all a E A, x e K and u E U: 

(S(a) . s - l ( x ) )  (~t) = (X " a)(S(u)). 

Then we see that  S(xA ) is a left B-submodule of A for any X since for all a E xA, 

b E B and x E K,  

x. S-1(bS(a)) :x. (aS-1(b)) : E(Xl. a)(x2 �9 S-1(b)) 

: ~ ( x ,  a)~(x2)s-'(b) since S-I(B) = ~A 

: ( x .  a)S-l(b) 

=~(~)S-~(bS(~)). 

Let X E X(K, C). We have to show that  S(xA ) is finitely generated and projective 

as a left B-module. Using the notations above it suffices to show that  bi 6 S(xA ) 

and S(a)ai E B for all i and a E xA. For all u E U and x E K,  

( x .  cs, ,v)(u) : ~(uxv) = x(~)S,(~v) : x(~)cs,,~(~), 

hence bi = S(cA,~) E S(xA ). For all a E xA, S(a)a~ E B = S(~A) since ai = cs,~ , 



Vol. 111, 1999 QUANTUM HOMOGENEOUS SPACES 171 

and for all x E K,  

x .  S -1 (S(a)ai) =x .  (S-l(cf,v,)a) 

---- E ( X l '  s - l ( c f , v i ) ) ( x2  �9 a) 

= E ( X l "  s-l(cf ,vi))X(x2)a since a E eA 

= ( ( Z  x(x2)Xl) s -1 

:E(X) S -1 (Cf,v~)a 

=E(x)S-l(S(a)a~). 

In the proof we used the equality 

EX(X2)Xl "s-l(cf,v,) = E(X)S-I(c f ,v i ) ,  

which holds since for all u E U 

( E / ~ ( x 2 ) x l  �9 S -1 (Of,v,))(u) = E cs,v, (X(X2)S - I  (Xl)S -1 (u)) 

= E f(x(x2)S-1 (Xl)S -1 (u)vi) 

since f 

= 

(2) As in the proof of 2.2, let A be the image of A under the restriction map 

U ~ ~ K ~ and ~: A --+ ft. the induced surjective coalgebra map. By 2.2, the kernel 

of 7r is A B  +. The group-like elements in A ~ are the characters of K.  Hence the 

group-like elements G(-~) of ft. are the characters of K which can be extended to 

a linear map a: U -+ k with a E A. 

Let X be a character of K with A x ~ O. In the notation of the proof of (1), the 

matr ix  coefficient cs,~ is an element in A such that  for all x E K,  cs, . (x ) = X(x). 
Therefore X is a group-like element of A. 

By definition, the space of left x-invariants is the eigenspace Ax, since for 

all a E A, ~ r ( a l )  | a2 = X | a if and only if for all x E K and u C U, 

a(xu) = ~a l (x )a2(u )  = X(x)a(u). Similarly, the space of right x-invariants is 

xA. In particular for all a E A x, n(a) = xr and we see that  lr(Ax) = kx. 

Hence by (1), fi, = r (A)  = ~xeX(g , c ) kX ,  and X(K,C)  is the set of all group- 

like elements of A. This finishes the proof of (2) since A ~ fi,. I 

In the next theorem we consider the special case of 2.2 when K = k[x] for some 

(g, 1 ) - p r i m i t i v e  e l e m e n t  x E U, that  is A(x) = g | x + x | 1, g group-like in U. 

Then K is a commutat ive left coideal subalgebra of U. If C is a tensor category 
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of  finite dimensional  left U-modules ,  we call an element  x ~ U C - s e m i s i m p l e  

if for all V E C, the linear m a p  V ~ V, v ~ xv, is diagonalizable. W h e n  x is 

(1, g)-pr imit ive,  tha t  is A(x)  = l | 1 7 4  then k[x] is a right coideal suba lgebra  

of U. 

THEOREM 2.5: Let  U be a Hopf algebra with bijective antipode over an 

algebraically closed t~eld k, g a group-like element and x a (g, 1)-primitive (resp. 

(1, g)-primitive) element of U and C a tensor category of finite dimensional left 

U-modules. Define A := U ~ B :-- ( a  E A [ a - x  -- 0} and fl :-- A / A B  + (resp. 

A /  B+ A ). Assume that the antipode of A is bijective, 

(1) The following are  equivalent: 

(a) x is C-semisimple. 

(b) A is spanned by group-like elements. 

If these conditions hold, then A is faithfully flat as a right and as a 

left B-module.  

(2) If  C is semisimple and B is a simple object in A4 A (resp. BA4A), then 

B := {aE A I ~n>_ l : a . x ~  ~O}.  

Proof: We assume tha t  x is (g, 1)-primitive (in the  case of (1 ,g)-pr imi t ive  

e lements  we then  apply  the  result  to the dual  coalgebra of U). Then  K := k[x] 

is a left coideal suba lgebra  of U and ( t )  is a special case of  2.2(4) and (2) since 

x is C-semisimple if and only if K is C-semisimple. 

For (2) it is enough to show tha t  B -~ A (2) := {a E A I a -  x ~ = 0}. Assume 

B C A(2). Le t  r A --4 A, r  := a - x ,  be right mult ipl icat ion with x. T h e  

m a p  r is r ight A-colinear since for all a E A and u, u '  E U, 

= = = 

hence A ( a -  x) = ~ a l  �9 x | as. Since A is a right U-module  algebra,  r is also 

right B-l inear ,  because for all a E A and b E B, 

( a b )  - z - -  = g ) ( b - x )  + ( a - x ) b  = 

since b-  x = 0 by the  definition of B.  Thus  ~b is a morph i sm in A/t A. Hence 

also A (2) --+ B, a ~ a �9 x, is a morph i sm in ~ l  A. This  m a p  is non-zero since 

B C A(2), hence it is onto because B is a simple object  in Ad A. By assumpt ion ,  C 

is semisimple ,  hence A is cosemisimple.  Therefore  the  surjective m a p  A (2) -+ B 

splits as a m a p  of right A-comodules  and there  exists a right A-colinear m a p  

~: B --~ A (2) such t h a t  9,(b).x --- b for all b E B. Since A(~(1))  = ~/(1) | 1, O'(1) is 
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a scalar multiple of the identity in B and we get the contradiction 1 = ~/(1) �9 x = 

"~(1)r ---- 0. | 

3. U n i t a r i z a b l e  t e n s o r  ca tegor ies  

In this short section we want to show that for Hopf *-algebras there is a natural 

condition which guarantees that a left coideal subalgebra K is C-semisimple. 

Hence in many examples for quantum homogeneous spaces with *-structures 

our main result 2.2 can be applied. 

A Hopf *-algebra H [KS, 1.2.7] is a Hopf algebra over the field of complex 

numbers with an involution ,: H -+ H such that for x, y E H and a complex 

number a (with complex conjugate (~) 

Then 1" = 1, e(x*) = E(x) and S(x*)* = S - I ( z )  for all x e H. 

In this section, for all subsets T of a Hopf *-algebra H let T* := {t* I t C T}. 

A coalgebra is called p o i n t e d  if each of its simple subcoalgebras is one- 

dimensional. A Hopf algebra is pointed if it is generated as an algebra by 

group-like and skew-primitive elements [M, 5.5.1]. In particular, the q-deformed 

enveloping algebras of semisimple Lie algebras are all pointed. 

PROPOSITION 3.1: Let U be a Hopf *-algebra and I C U a coideal. Define 
K :-- U c~ Then: 

(1) K is a left coideal subalgebra of U, and if U is pointed (or more generally 

U is faithfully left coflat over U/ iU) ,  then IU -- K+U. 

(2) I f  S(I)* c I,  then K* = K.  

Proof'. (1) Since IU  is a right ideal and coideal, the set of right U/IU-coin- 

variant elements K is a left coideal subalgebra. If U is pointed, then by [M2, 1.3] 

U is left (and right) faithfully coflat over U/IU.  Hence we know from Theorem 

1.1 (applied to A ~176 that IU  = K+U. 

(2) First note that  K + C IU since, for any x E K,  y~ Xl @ :~2 : X ~) 1, hence 

= ~(x)i in U/IU.  By Koppinen's lemma 1.4, S(K+U) = U K  +. Then 

(K+) * C (UK+) * =S(K+U)  *, since U K  + = S(K+U) 

cS ( IU)* ,  since K + C IU 

=s(i)*v 
c IU,  since S(I)* C I. 
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Clearly K* is again a left coideal subalgebra with ( K ' )  + = (K+)  *, and we have 

shown that  (K*)+U C IU. Therefore 

K* C U c~ C U c~ = K. 

Since * is an involution, we get K" = K. | 

As an illustration of 3.1(1), let g,h be group-like elements of U and x E U 

with A(x)  = g | x + x ~) h. Then kx is a one-dimensional coideal, k[xh -l] is a 

left coideal subalgebra, and xU = k[xh-1]+U. 

Remark  3.2: Let U be a Hopf , -a lgebra and C a tensor category of finite dimen- 

sional left U-modules.  For any left U-module V let 12 be V as an additive group 

with the following left U-module structurc,  denotcd by *: For any v E V and 

u E U ,  

u * v : =  S(u)'v. 

In particular,  12 is a complex vector space with ct * v := civ for complex numbers  

a.  12 is the restriction of V to U via the ring isomorphism 

U--*U, u ~ S ( u ) * .  

A tensor category C will he called a t e n s o r  , - c a t e g o r y  if for all V E C also 

12 E C. Let C be a tensor *-category. Then: 

(1) A :=  U ~ is a Hopf *-algebra with *-structure defined by a*(u) := a(S(u)*) 

for all a E A and u E U. 

(2) If I C U is a coideal with S(I)  ~ C I,  then B := {a E A [ a -  I = 0}, the 

algebra of infinitesimal invariants defined by I,  is a *-subalgebra of A. 

Proof: (1) The full Hopf dual U ~ is a Hopf *-algebra with *-structure as 

described above. A is closed under the , -s t ructure  since for all V E C, v E V, 

linear functionals f on V and u E U, 

c),v(u) = S(S(u)*v) = c ] , , , ( ~ ) ,  

where c],, is the matrix coefficient of 12 and the linear fimctional f oil 12 is 

defined by f (w)  :=  f (w)  for all w E 12 = V. 

(2) is easy to check [KD, 1.9]. 1 

Let U be a Hopf , -a lgebra and C a tensor category of finite dimensional left 

U-modules.  We call C u n i t a r i z a b l e  if for all V E C there is a hernfitian inner 

product  (,}: V • V -4 C, conjugate linear in tile first and linear in tile second 

variable such tha t  for all x E U and v ,w E V, (xv, w) = (v,x*w). 
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COROLLARY 3.3: Let U be a pointed Hopf  ,-algebra, C a unitarizable tensor 

category of  finite dimensional left U-modules, and I C U a coideai with S(I)* C 

I. Define A := U ~ and B := {a E A I a .  I = 0}. Then: 

(1) K := U c~  is a left coideal subalgebra of U, B := {a E A [ Vx E 

K: a .  x = aT(x)} is a right co• subalgebra of A and K is C-sere• 

(2) A / A B  + is cosemisimple, A is faithfully fiat as a left and a right B-module  

and a direct sum of  finitely generated and projective left B-modules and 

right B-modules  as in 2.2. 

Proof: (1) Since U is pointed, we get from 3.1(1) that I U  = K+U.  Hence B is 

also the set of infinitesimal invariants with respect to K +. Moreover, K* = K 

by 3.1(2). Let V E C and (,) the hermit• inner product on V • V. We have to 

show that V is semisimple as a module over K. Let W E V be a K-submodule. 

Then W • = {v E V ] Vw E W: (v,w) = 0} is a K-submodule because for all 

x E K,  v E W • and w E W, 

(xv, w) = (v, z ' w )  = 0 

sincex* E K. Hence V = W |  • is ad i r ec t  sum of K-modules, and V is 

K-semisimple. 

(2) follows from (1) and 2.2. . 

Remark 3.4: Corollary 3.3 applies to many recent examples of quantum homo- 

geneous spaces. 

1. In general, if 9 is a semisimple Lie algebra and U = Uq(g) is the q-deformed 

universal enveloping algebra with positive real q ~ 1, then U is a pointed Hopf 

*-algebra with standard *-structure, and the tensor category of finite dimensional 

left U-modules of type 1 is unitarizable ([CP, 10.1.21], for the non-degeneracy of 

the inner product on the simple modules cf. [dCK, Proposition 1.9]). 

2. Let A = A(SUq(2)) be the function algebra of the q-deformed special unitary 

group SU(2) and assume 0 < q < 1. For any parameter p E [0, cx~], Dijkhuizen 

and Koornwinder [KD], [KS, 4.5] defined a right co• subalgebra B = Bp C A 

by infinitesimal invariants with respect to one skew-primitive element xp. They 

show that  the algebras Bp can be identified with the function algebras of Podleg' 

quantum spheres Sq2c for 0 < e < oo, [P]. In this situation all the assumptions in 

3.3 are satisfied for the extension B C A. In particular, we know from 3.3 and 

2.2(4) that A / A B  + is spanned by group-like elements. This answers a question 

of Brzezifiski [B]. 
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3. A more general family of examples has been introduced by Dijkhuizen and 

Noumi [DN], [KS, 11.6.6]. Let n > 2 and 0 < q <_ 1. For any non-negative real 

numbers c, d which do not vanish simultaneously, they define a coideal I = I (c'd) 
n - - I  in Uq(gI(n)). Then they define the quantum projective space CFq (c, d) with a 

natural transitive action of the quantum unitary group Uq(n). Here CFq -1(c, d) 

is given by a right coideal snbalgebra B = B (c'a) in A := A(Uq(n)), the func- 

tion algebra of Uq(n). B is defined by infinitesimal invariants with respect to 

[(c,d). These homogeneous Uq(n)-spaces have first been studied by Vaksman and 

Korogodsky [KV] as a q-analog of the Hopf fibration S 2n-1 -> CP "-1. Again the 

extension B C A satisfies the assumptions in 3.3. 

4. [D] contains a survey of similar constructions of quantum homogeneous 

spaces which are analogs of compact symmetric spaces. 

4. Semis imple  skew-pr imi t ive  e l emen t s  in Uq(sl(2)) 

Let k be an algebraically closed field and let q be a non-zero element of k, which 

is not a root of unity. For all positive integers n let En be the unit matrix with n 

rows and columns. 

First we recall some definitions and results of [K]. 

For any integer n, set [K, p. 121} 

In] - qn _ q - .  _ qn-1 qn-3 q-n+3 q - .+ l .  q_q-~ + + . . . +  + 

The Hopf algebra Uq(sl(2)) is generated as all algebra by E, F, K, K -1 with 
relations 

K K  -1 = K - 1 K =  1, K E K  - l  =q2E,  

K _ K - t  
K F K  - l = q - 2 F ,  E F - F E =  q_q-I 

and comultiplication defined by 

A ( K ) =  K | K, A ( K - 1 )  = K-X | K-~ ,  

A ( E ) = I | 1 7 4  A ( F ) = K - ~ | 1 7 4  

All simple Uq(sl(2)) left modules are isomorphic to some Ve,r. where e = -t:1 

and n is a nonnegative integer. The (n + 1)-dimensional module Ve,. has a 

basis {v0, v l , . . . ,  v,,}, such that the left action of the generators E, F, and K of 



Vol. I I 1, 1999 Q U A N T U M  H O M O G E N E O U S  SPACES 177 

Uq(sl(2)) can be represented on this basis by the matrices [K, p. 129] 

p~.,n(E) =e  

(0 o i ) ( i  0...o 
0 0 [ n - l l - - -  0 . . .  0 

" "'. "'. "'. , pe , . , (F)=  [2] ".  0 

0 0 . ". ". '. . 
o o . . .  o o . . .  [nl i/ 

and pe,n(K) = e 

qi 0 .-. 0 0 qn-2 . . .  0 0 

0 . . .  q-n+2 0 
0 "'" 0 q -n  

Here we need the right action and use the transposed matrices. We first consider 
the case e = 1. Let 

x = ot(K -1 - 1) + /3EK -1 + 7 F  

be a (K -1 , 1)-primitive element of Uq(sl(2)), where a, ]3, and 3' are fixed elements 
of the ground field k, which do not vanish simultaneously. Then the (right) action 

of x on the chosen basis of Vl,n can be represented by the matrix 

i n :--~ 

(q-n _ 1)a 7 0 "'" ! / 

q-n[n]/3 (q2- ,  _ 1)a [2]3' " ' " .  ' 

0 q 2 - n [ n -  1]13 ( q 4 - n _  l )a  " ' " .  

�9 ' . . .  ' . - .  - . . .  ( Inl _.l 0 .. .  0 qn-2[1]/3 )& 

The q u a n t u m  p lane  kq[a,b] is the k-algebra generated by the elements a 
and b with the relation ba = qab [K, Chapter IV]. It is a Uq(sl(2)) left module 
algebra, where the action of Uq(sl(2)) is given in [K, Chapter VII.3]. Here we 
need the corresponding right action given by 

b . E = O ,  a . E = b ,  b . F = a ,  a . F = O ,  b . K = q b ,  

a .  K = q - la ,  b. K -1 = q- lb ,  a .  K -1 = qa. 

The quantum plane has a natural gradation, given by the degrees of the 
monomials, therefore there are no zero divisors. Let kq[a, b],~ denote the vec- 

tor subspace of homogeneous polynomials of degree n in kq[a, b]. Then kq[a, b]n 

is a simple Uq(sl(2)) right module isomorphic to VI,,, [K, Theorem VII.3.3]. 
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LEMMA 4 .1 :  

(1) There is a non-zero element 4 C kq[a, b]2 such that 4" x = O. 

(2) For all z,4 E kq[a, hi, where 4" x = 0, the equation (z[) . x = (z . x)~ holds, 

that is, the action of x is Bx-right linear, where 

B x  = {~ C kq[a,b]: [ - x  = 0}. 

(3) The eigenspaces of the action of x on ka[a , b]~ are one-dimensional. 

Proof: (1) The determinant of M2 vanishes. 

(2) The quantum plane is a module algebra of Uq(sl(2)) : 

(z4) "x = (z.  K - ' ) ( ~ .  x) + ( z ' x ) ( 4 -  1) -- (z.  x)4. 

(3) Let A E k and let E~+I be the unit matrix with n + 1 rows and columns. 

In the cases/3 # 0 or 7 # 0 the first or last n columns respectively of Mn - AEn+I 

are linearly independent. In the case/3 = 7 -- 0 there must be u # 0, and in 

the diagonal matrix Mn - AEn+l at most one entry in the diagonal vanishes, for 

since q is not a root of unity, all entries in the diagonal are pairwise distinct. 

t 

For convenience, we fix a solution v/~ of the equation x 2 = q and define ql := 

v/~ 2l for l E 1Z. For each nonnegative integer n set 

PROPOSITION 4.2: 

(1) Let 

n I n : = { - ~ ,  1 ~ , ' " , 2 ~  - n - l , ~ } "  

(2) 

Pn(Y) = det(Mn - YEn+l) = ( -1)n+I(Y n+l + znY ~ + d,~-lY n-1 + . .  ") 

be the characteristic polynomial of M, .  Then for n > 2 the polynomial 

Pn-2 divides pn. 

Fix R E k such that 
4flTq -1 

R 2 = o~ 2 + 
(q _ q - 1 ) 2  ' 

Then Mn has the n + 1 (not necessarily distinct) eigenvalues 

:= :z-a . q-T)2 ~(q2~ q-2~)R ' A~ -:(q - + - 

for r E In. 

Proof: (1) Let # be an f-fold zero of Pn-2, i.e. the dimension of the generalized 

eigenspace for the eigenvalue # in kq[a, b],~-2 is f ,  and let v l , . . . ,  vf be a basis 
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of V~ -2. Therefore there exists a positive integer t such that  v~, - ( x  - # ) t  = 0 

for u -- 1 , . . . , f .  Let ~ be as in Lemma 4.1. Then V l~ , . . . , v f~  are linearly 

independent elements of kq[a,  b],~, since kq[a,  b] is an integral domain. Moreover, 

by part  (2) of the lemma, 

( v . ~ ) .  ( .  - z ) t  = ( v . .  ( z  - , ) t )  ( = 0, 

whence v.~ for u = 1 , . . . ,  f belongs to the generalized eigenspace for the eigen- 

value # in kq[a,  b],~. Therefore # is at least an f-fold zero of pn. 

(2) For n = 0 and n = 1 one easily computes 

P o ( Y )  = O -  Y = - Y  and 

p i ( v )  = y 2  _ ~ ( v ~  - v ~ - ' )  2Y - q - 1 ~ 7  _ . 2 ( v  ~ _  v ~ - 1 ) 2 .  

Now assume n _> 2. Due to degP~(Y) = 2 + degP~-2(Y)  and part  (a) only the 

two extra  zeros a,~ and b~ of P,~ have to be determined. Vieta 's Theorem says 

z ,~-2  - an  - bn = zn ,  a n b n  - (an  + b n ) z n - 2  + d n - 2  = dn 

an  + bn = z ,~-2  - Zn, a n b ~  = d,~ - d ~ - 2  + z~-2(z~-2 - z~). 

Therefore a,~ and b~ must satisfy the quadratic equation in T 

T 2 - (z~-2 - z n ) T  + d,~ - d ,~_:  + z n - 2 ( z , ~ - 2  - z,~) = O. 

Let I -- n / 2 .  We compute the coefficients of this equation: 

(a) The coefficient z~ is the negative trace of Mn. Therefore 

z n  - z n - 2  = - u ( q  n - 1 + q - n  _ 1) = - u ( q  z - q - l ) 2 .  

(b) The coeff• d~ is the sum of D,~ and N~, where D,~ is the sum of 

all products of two distinct entries of the main diagonal and Nn is the sum of 

products of entries, which do not belong to the main diagonal. All indices run 

over I n  if there are no limits of summation. 

D~ :-- a 2 E ( q  -2~ - 1)(q -2~ - 1) 
r < s  

= ~ ( E a ( q _ 2 ~  - 1))2 1 2 -2~ - ~ ( a  E (  q - 1) 2) 
r ?" 

1 2 E ( q - 2 r  _ 1)2. -- �89 ~a 
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? l  

Nn := - q-2f lTy~.q2t - '~[ t l [n  + 1 - t] 

t = l  

-Nnq 
fi,,//(q _ q-1)2 

=k 

= _ q - t ) ( q n + , - ,  _ 

t = l  
n n 

= (qn+l + q - ~ - l ) ~  q2t-,~-l_ ~_.(q4t-2n-2 + 1) 
t = l  t = l  

/ t  

~-q-~  ~(q*t-2-2~ 1) = (qn+l + q - n - 1 ) q  q-1 + 

q -- t = l  
n 

__q2n+lq_q_l- -  q - 2 n - 1  - -1  + ~_~(q4t -2-2n -4- 1) =~ 

t = l  

N l - 1  - Nl q 2 n + l  _ q 2 n - 3 . . t _ q 3 - 2 n _ q - 2 n - 1  _ q 2 n - 2 _  q2-2n _ 2 

q - l i l T ~ (  q _ q-l)2 q _ q-1 
= (1 + q2)(q2,~-2 + q-2n)  _ q2n-2 _ q2-2n _ 2 

_ 

Now the constant  coefficient of the quadratic equation can be computed: 

dl - d~-i  + Z l - l (Z l -1  -- zl) =Nz - N l - 1  + Dl - D l - 1  + z l - t ( z l - 1  -- zl) 

= N z  - N z - 1  - 7a l  2 ( ( q ~  _ 1)2 + ( q - n  _ 1 ) 2 )  

1 2 _ lZ2  + gzl ~ 1-1 + 2 - 1  - z tz~-i  

1012(qn(ql _ q- l )2  =NI  - N z - I  - g , , + q-,~(ql _ q - l )2 )  

1 + ~(zz- ,  - z~) 2 
_ la2iqn _ q-l)2 

= N l  - N z - 1  ~ , + q - , ~ ) ( q l  

1 2 ,  l q-,)4 + ~ a  (q - 

-fl'Y (q21 _ q-2,)2 _ a2(ql _ q-l)2. 
= q ( q  _ q - 1 ) 2  

Therefore the quadrat ic  equation is 

q - l i l T  (q2t q-2t)2 q- l )2  X 2 - -  a ( q  I - q - l ) 2 x  ( q ~ ) f f ,  - - ol2(q l - = O. 

Note tha t  for n = 1 this equation equals P I ( Y )  = O. It has the discriminant 

( q-lfl .),  ( q 2 l _ q - 2 1 ) 2  O~2 (q I _ q-l)4 + 4 \ (q_-Z-~)2 + a2(ql _ q - l ) 2 ]  

4 q _ 1 ~  ' : (q2l _ q - 2 l ) 2  a 2  + (q _ q - l ) 2 ]  " 
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If R solves the equation 
4q-1/3~, 

X 2 _-- O~ 2 ~- 
(q_ q-1)2, 

we get the zeros An/2 and A_~/2, where 

For n = 0 this is the zero 0 of P0. | 

for 2r E Z. 

Remark 4.3: In [NM, Theorem 1] another method is sketched to get the zeros 

of Pn(Y) if x acts diagonally. Starting from a matrix 

in GL(2; C) (but C can be replaced by k), the following element is considered: 

D = -&BE + (&~ + ~ ' )  K - 1 q - q--------~ + ~ q - I F K  

(the authors write q~ for K,  v~X+q H/2 for E and v~X_q -H/2 for F). By 

construction of the eigenvectors of the left action of D on the quantum plane, it 

is shown that  the distinct eigenvalues are 

qm _ q-m 
A,~(g) = . (a~qm _ ~X/q-m)  

q_q-1  

where 2m 6 Z, if &~ - q2t#zy ~ 0 for all t 6 Z (then D is called diagonalizable). 

This left action is represented by a matrix obtained from Aim by swapping the j - th  

column with the (n + 1 - j ) - th  column and the j - th  row with the (n + 1 - j ) - th  

row for t < j <__ (n + 1)/2 and therefore has the same characteristical polynomial 

as i n ,  where 
+ 

q _ q - l '  

Consequently, in the case &5 - q 2 , ~  r 0 for all t E Z there is the factorization 

P,,(Y) = (A,~/2(g) - Y)(A,~I2-1(g) - Y ) ' "  (A-~/2(g) - Y). 

Up to the cases D E k E  or D E kFK,  the products 5~ and ~ do not vanish 

simultaneously, and if exactly one product vanishes, then D is always diagonal- 

izable. Now assume that 5~Z~/~ ~ 0. In the factorization of P,~(Y) both sides 

are polynomials in &, ~, ~, ~. The equation is valid for an infinite number of 
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values for t~ (when ~, #, (~ are fixed), therefore it is an identity of polynomi- 

als in &. A similar reasoning holds for ~, -~, 6. Thus A~/2(g) , . . . ,  A-n/2(9) are 

the not necessarily distinct zeros of P,~(Y) in any case, even if 9 is an arbitrary 

2 x 2 matrix. Translating this into the notation of the Proposition, one gets the 

zeros AT considered in the Proposition. The condition R # 0 is equivalent to 

~5 - j3# # 0 (this is excluded by the choice of g in [NM], but also in this case D 

is skew primitive). 

THEOREM 4.4: Fix R E k such that R 2 = a 2 + 4q-1j37/(q - q-l)2. Then the 

following statements are equivalent: 

(1) For all nonnegatiye integers n, the matrix M~ can be diagonalized. 

(2) R r 0, and for ali nonnegative integers m, the kernel of the action of x 

on V1,2,~ equals the generalized eigenspace for the eigenvalue 0 (i.e. if  v . x  t = 

0 for some t >_ 1 and v C V1,2m, then v .  x = 0). 

(3) There is no nonnegative integer n satisfying 

(qn  + q - n )  2 _a2. 

q-lZ  \ q-CUr = 

Proof." The conclusion (1) ~ (2) is trivial (R = 0 implies that AT = A-T for 
1 all r C ~Z \{0} ,  and by the Lemma, the action of x on VI,,~ for n > 1 cannot be 

diagonMized). 

In order to prove (2) ~ (1), assume there is a polynomial Pn with a double 

zero. Then by 4.2 there are distinct half integers 1 and m such that 1 + m is an 

integer (because l, m 6 In) and Al = Am. Hence 

Ol l q - l ) 2  1, 2l -~ (q  - + -~l,q - q - 2 t ) R  = 

OL q_,~)~ 1 _ q_2,~) R 
- 2 ( q m -  + (q2m 

a (q2t q -21  q2m q--2m) + R(qzZ _ q-2t q2m + q-Zm) 0 =~ -~ + - _ _ = 

=~ (ql-m _ q m - Z ) ( 2 ( q Z + r a _ q - t - m ) +  R(qt+ra +q-Z--m)) = 0  

(q l -~  _ qm-l)At+ m = O. 

Since q is not a root of unity, this yields Al+m = 0. The assumption R # 0 

implies l + m r 0, whence 0 is a double zero of P211+ml, and by the Lemma, the 

generalized eigenspace of 0 does not equal the eigenspace in V1,21t+ml" Finally, 
condition (3) is equivalent to R r 0 and A,~A-n r 0 for all positive integers n, 

i.e. to condition (2). | 
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There is a similar statement about (l ,K)-primitive elements of the 

algebra Uq(sl(2)). 

Remark 4_5: 1. We consider y := xK. Then y is (1, K)-primitive and 

Hopf 

:= p~,~(y) = p~,,~(K)Mn 
/ (1 - q-'~)a qn-2 7 0 "'. 0 ) 

q -412b ' . . .  " 

= 0 [ n -  1]/3 (I - q4--n)Od''''. 0 

" " -  " . . . .  

; 0 [1]/3 (1 - qn)o: 

Let M~ be the matrix obtained from M~ after replacing a by - a  and interchang- 

ing/3 and 3'. Comparison with M,~ yields that for all i , j  <_ n +  1, the / , j - en t ry  of 

Mn is the (n + 2 -  i, n + 2 -  j)-entry of M'~', whence the characteristic polynomials 

of Mn and M~ are identical. If Pn(Y) is the characteristic polynomial of M~, 

then the characteristic polynomial of M" is P n ( - Y )  because all eigenvalues re- 

main unchanged when/3, -y are swapped, and replacing a by - a  can be performed 
by multiplying the first, third, fifth, . . .  row and the second, fourth, sixth, . . .  

column by -1 .  Thus 4.2(2) explicitly gives the zeros - ~  of the characteristic 
polynomial of the action of y on Vl,m and two of them coincide if and only if 

this is true for x, too. An analog of 4.1 holds for y, too (the equation in part (2) 

becomes (~z) -y  = ~(z.  y)), in particular all eigenspaees are one-dimensional. 

Therefore 4.4 can be proved analogously for y. 

2. If there exists a nonnegative integer n such that 

( q,~ + q_,~ ,~ 2 = - a  2 q-1/3  \ q = ) 

then direct computation as in 4.4 gives A~ = A~_~ for all r. If n is even then 

the eigenspace for ~,~/2 equals the generalized eigenspace and the eigenspaces for 

other eigenvalues are not the generalized eigenspaces. This explains why the case 

R = 0, where the eigenspace for the eigenvalue 0 is the generalized eigenspace 

but x is not diagonalizable, is not too special from this point of view. If n is odd 

then all eigenspaces are different from the generalized eigenspaces. 

3. If and only if there is an element n C 1 N \  N satisfying 

qn + q-n'~ 2 = 

] 
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then there is a non-zero element ~' E kq[a,b]2n such that ~ ' .  x = 0. This 

means that the algebras generated by 3 generators and 4 relations in analogy 

to Podle~' quantum spheres are proper right coideal subalgebras of the algebra 

B = {a c A I x . a  = O} from the construction in 2.4, cf. [Mfi]. These cases have 

been excluded in [KD] by the assumption that x should be *-invariant. The pre- 

cise correspondence between the parameters ~, fl, 3' used in this section and the 

parameter c (including the case c = cr in Podleg' original quantum spheres S~c 

(for # = q) is as follows: 

~q-1 i f ~ # 0  C = c t2 (q - -q -1 )  2 

if a = 0 (and/3 7 # 0) 

(in the *-invariant case we automatically have a E R and q~, = fl, whence 

_q-t)] 

is nonnegative). The speciat cases for negative c in [P] do not occur because then 

the finite dimensional quantum spheres cannot be canonically embedded into the 

function algebra as ,-invariant subalgebras. 

If x (or y respectively ) is diagonalizable on all modules Vl,n, then the following 

general argument shows that  it is diagonalizable on all modules V~,,~. Let k w  

be a one-dimensional Uq(sl(2)) module with basis {w}, such that  E �9 w = 0, 

F . w = O, K . w = ew. Then V~,n -~ k w  | Vl,,~ ~ V~,,~ Q kw,  where Uq(sl(2)) acts 

diagonally on the latter two modules and the second isomorphism is due to the 

Hopf algebra automorphism of Uq(sl(2)), which maps E and F to - E  and - F  

respectively and leaves K unchanged. 

PROPOSITION 4.6: Let  U be a H o p f  algebra, g E U a group-like element ,  x E U a 

(g, 1)-pr imi t ive  (respect ively  (1, g)-pr imi t ive)  e lement ,  k w  a one-dimensional  lef t  

U-modu le  wi th  basis {w} and V a f ini te dimensional  left  U-module .  I f  the  action 

o f  x on V is diagonalizable, then so is the  diagonal action on k w  | V (respect ive ly  

V | kw). 

Proof." Assume x is (9, 1)-primitive. (The proof for (1,g)-primitive elements is 

similar.) Since k w  is a one-dimensional U-module, there is a map X: U --+ k such 

that  u �9 w = X(U)W for all u E U. Let v l , . . . ,  v~ be a basis of V consisting of 

eigenvectors of the action of x, i .e .x .vj  = Ajv j  for j = 1, . . . ,  n and Aj E k. Then 

=- (~ | v~) =(g.  ~) | (z. ~j) + (x. ~) | v~ 

=x(g)w | ,~jv~ + x(z)w | vj 

=(x(g)~,~ + x(=))~ | % 
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whence the set { w | v l , . . . ,  w | v .  } is a basis of k w  | V consisting of eigenvectors 

of x. II 

5. A p p l i c a t i o n  to  Uq(g) 

As in the last section, we assume that k is an algebraically closed field of 

characteristic 0. 

Let (aq) be an n x n matrix with integer coefficients such that a ,  = 2 for all i, 

a O r 0 for all i r 3, and there are relatively prime integers a l l , . . . ,  dn E { 1, 2, 3} 

such that (d,a~j) is a symmetric positive definite matrix. 

Thus (a~j) is the Cartan matrix of a finite dimensional scmisimple Lie algebra g. 

Let q E k \ { 0 }  be not a root of 1 and define qi := qa,. The standard q- 

deformation Uq(0) is the algebra generated by Ei, Fz, K z , K ~  -1 subject to the 

following relations: 

K,K~- I = 1 = K~- 1 Ki ,  K i K j  = K j  Ki ,  

K~EsK[-I  a,, = qi = q, E T, K t F j K ?  l - a ' F j ,  

E iF j  - F jE i  = 5~j K1 - K [  1 
ql _ q~- 1 

for at1 i , j ,  and the q-deformed Serre relations (see [J, 5.1.1(vi))) between the E j s  

resp. the Fi's which we do not need explicitly. Uq(o) is a Hopf algebra where all 

the elements Ki are group-like and 

A(Ei) = 1 | E, + E, | K ,  A(Fi) = Kz -1 | f i  + Ft | 1 

for all i. For 1 < i < n let Ui be the subalgebra of Uq(l~) generated by 

Ki, K~ - l  , E,, Fi. Then U, ~= Uq,(st(2)) as Hopf algebras. 

Let C be the semisimple tensor category of all finite dimensional left Uq(g)- 

modules of type 1, that is all eigenvalues of the left multiplication with Kz for 

all i are of the form q m  m E Z (see for example (J, 4.3]). The dual Hopf algebra 

Uq(l~) ~ is the q-deformed algebra of regular functions on the simply connected, 

connected semisimple algebraic group with Lie algebra ~I. Let x E Uq(9) be a 

(g, 1)-primitive element which is not a scalar multiple of g - 1. Then there is 

some i such that .q = K~ -1 and x E Ui is a k-linear combination of Ki -1 - 1, E i K ( 1  

and Fi [CM, Theorem A]. We call x semis imple  if multiplication with x is a 

diagonalizable operator on all finite dimensional left Uq(g)-modules. 

LEMMA 5.1: For any 1 < i < n let V be a finite dimensional left U,-module  o f  

type  1 and x 6 U, C Uq(g) a ( K ~  l, 1)-primitive element.  
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(1) There exists a t~nite dimensional teft Uq(g)-module W of type 1 and a one- 

dimensional left Uq(9)-module ha with Eja -- O, Fja = 0 and Kja  = aja  

where aj  E { 1 , - 1 }  for all 1 <_ j < n such that V is isomorphic to a 

Ui-submodule of ha | W and ai = 1. 

(2) x is semisimple in Ui if and only if  x is semisimple i n  U q ( g ) .  

Proof: (1) By [J, 10.1.14] or using the classification of highest weight modules 

of Uq(9), V is contained in a finite dimensional left Uq(~)-module I). From the 

description of finite dimensional ]eft Uq (9)-modules it is known tha t  1) -- ka | W,  

where W is a left Uq(g)-module of type  1 and Eja = O, Fie  = O, K ja  = aja,  

a j  e { 1 , - 1 }  for all j (see [J, 4.3]). It remains to show that  a i  = 1. Since V is 

of type  1, there is a non-zero v E V such that  Kiv = q'~v for some m E Z. Let  

a | w be the image of v in ka | W. Then  

q'~(a | w) -- Ki(a | w) = Kin | Kiw = cqa @ Kiw, 

hence Kiw = a:(aqmw. Since W is of type 1, we conclude ai  = 1. 

(2) If x is semisimple in Ui, then trivially x is semisimple as an element in Uq(9). 

Conversely, assume x is semisimple in Uq(g). Let V be any finite dimensional 

left Ui-modute. By [J, 10.1.14] or the classification of highest weight modules 

of Uq(9), V is contained in a finite dimensional left Uq(g)-modute V. Hence 

mult ipl icat ion with x is diagonalizable on i ) and then on V, too. | 

THEOREM 5.2: Let 1 < i < n, a , /3 ,7  C k, and 

x = a ( K i  -1 - 1) + 13KT1Ei + 7Fi E Uq(9) \ { 0 }  

a (K~ -1, 1)-primitive element. Assume a 2 + 4q-X/3"~/(q - q-l)2 • 0. 

Let  C be the tensor category of finite dimensional left Uq(g)-modules of type 1. 

Define A := Uq(g)~ and B := {a e A I a .  x = 0}, Then the following are 

equivalent: 

(1) x is semisimple. 

(2) There is no nonnegative integer n satisfying" 

OL2 _[_ ~q-1  \ q __ q-1 ] = O. 

(3) A / A B  + is spanned by group-like elements. 

(3)' A /  B+ A is spanned by group-like elements. 

(4) A is faithfully//at as a left B-module. 
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(4)' A 
(5) S 

(5 ) 'B  
(6) B 

is faithfully flat as a right B-module.  

is a B-direct  s u m m a n d  in A as a left B-module.  

is a B-direct  s u m m a n d  in A as a right B-module.  

is s imple in WIA. 

(6)' B is s imple in B.~ A. 
I f  these conditions are satisfied, the set o f  characters X(k[x], C) (cf. Corollary 2.4) 

is given by 

X(k[x],C) = {X E Alg(k[x],k) lx(x  ) = Ar,r  E ~Z} 

where the Ar are the eigenvalues as computed  in Theorem 4.2(2). 

Proos (1) < > (2): By 5.1(2) and section 3. 

(1) => (3)and (3) ~ (4)follow from 2.5. 

(4) =~ (5) follows from 1.2. 

(5) ~ (6) is 1.3(2). 

(6) =~ (1): By 2.5(2), assumption (6) implies B = {a C A[ 3n _ 1: a . x  n = 0}. 

Let W be any finite dimensional simple left Uq(g)-module of type 1. By 2.1, 

part (2) and (3), W | W* TM C W as right (and left) Uq(g)-modules. Hence 

if f . x  n = 0 for s o m e n  _> 1 and f C W*, then f . x  = 0. Or equivalently, 

if r W* --+ W* is right multiplication with x, then Ker(r = Ker(r '~) for all 

n > 1. If ~b: W -+ W is left multiplication with x, then r = r and we get 

im(r = im(~bn), or equivalently, Ker(r = Ker(r for all n _> 1. Thus for all 

simple modules in C, hence for all modules W in C (because C is semisimple), we 

have shown 

{w ~ W I x . w  =0}  = {w E W I 3n>_ l : x  n .w =0} .  

We want to show the same statement over Ui. Let V be a finite dimensional left 

Ui-module of type 1. By 5.1(1), V is isomorphic to a Ui-submodule of ha | W ,  

where W is a left Uq(9)-module of type 1 and Eia = Fia = O, K ia  = a. Hence 

xa = a ( K [  -1 - 1)a + flK~-aEia + 7Fia = O, 

and the action of x on any element a @ w, w E W, is given by 

x(a  | w) = K ~ l a  | x w  + xa @ w, since A(x) = K/-1 | x + x | 1 

: a  | xW. 

In particular, 

{ v C V  I x ' v = O } - { v e v [ 3 n _ >  l : x  n . v = O } ,  
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since this equali ty holds for W. Thus  we see tha t  condition (2) of Theorem 4.4 

is satisfied (here we use the assumption a 2 + 4q-lfl"//(q - q-1)2 r 0). Hence by 

4.4(1), mult ipl icat ion with x is diagonalizable on all Uq, (sl(2))-modules of type  1, 

and x is diagonalizable as an element in Uq~ (sl(2)) by 4.6. 

Define y := xKi.  Then  y is (1,Ks)-primit ive,  and B = {a I a . y  = 0}. We now 

repeat  the previous arguments  with x replaced by y. Consider the s ta tement  

(1)' y is semisimple . 

We have shown in 4.5(1) and 4.6 tha t  x is semisimple in U~ if and only if y is 

semisimple in Us. Hence (1) r (1)' by 5.1(2). 

(1)' =v (3)' and (3)' =~ (4)' follow from 2.5. 

(4)' ::V (5)' follows from 1.2 (for A~ 

(5)' ~ (6)' is 1.3(2) (for A~ 

(6)' =v (2): B y 2 . 5 ( 2 ) , B = { a � 9  Hence for a l l W � 9  

{w �9 W I y . w = O} = {w �9 W[ 3n >_ 1: y" . w = 0}. 

Let  V be a finite dimensional Us-module of type 1. Then  by 5.1(1), V is a Us- 

submodule  of ka | W for some left Uq(f)-module W and Ei - a = 0, Fs - a = 0, 

K i . a  = a. Sinceya  = x a - -  0, A(y) = l | 1 7 4  and A(x)  = K ~ l | 1 7 4  

we have 

y(a | w) = a | yw + ya | Kiw = a | yw. 

Hence {v �9 V [ y . v  = 0} = {v �9 V [ 3n _> 1: y n . v  = 0}, since this holds for W. 

Therefore  we get from 4.4 for y tha t  (2) is satisfied. 

The  expression for X(k[x], C) follows from the description of the eigenvalues of 

the  act ion of x on simple Uq(sl(2)) modules in 4.2. | 

Remark 5.3: 

1. Now assume a 2 + 4q-lfl~//(q - q-1)2 = 0. This actually gives just  one 

exception:  

�9 If a ~ 0 consider ~ = 2(K~ -1 - 1) + (q - q - i ) K ~ l E i  + (q2 _ 1)Fi. 

Then  

B = {a r AI a . x  = 0 }  = {a r A [ a .  X x =  O} 

and the Hopf algebra automorphism of Uq(g) 

( ~ E i , ( q ~ _ l )  Fi ,Ki)  i f j = i  
(Ej,Fj,N) 

( E j , F j , K j )  i f j  r  

maps  -2x to ~ and induces an isomorphism of B to the algebra 

{a E A I a -  k = 0} of infinitesimal invariants with respect to  ~. 



Vol. 111, 1999 QUANTUM HOMOGENEOUS SPACES 189 

�9 If ~ = fl~/= 0, then x is a scalar multiple of g / -1Ei  or Fi. Then x (and Kix)  

acts nilpotently on all finite dimensional Ui-modules of type 1 and both x 

and K~x cannot be semisimple. Moreover, the numerical condition (2) does 

not hold. In this case 5.2 remains true. 
(2) In the case f~ = s12 the module structure is fiat for any choice of a,  ~, % (It 

can be shown that  A is the ascending union of free modules over B.) 
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